Pressure Compensated

G6...C Series

G6...C	Two-way Pressure Compensated
G6...CS	Two-way Pressure Compensated Stainless Steel Trim
G6...LCS	Two-way Pressure Compensated Stainless Steel Trim Linear Characteristic
Service	Chilled/hot water, 60% glycol, steam
C. Range to 6"	$65-344$ Material Stainless steel stem, Bronze plug or Stainless plug Control On/Off, Floating Point Multi-Function Technology ${ }^{\circledR}$ Electronic Fail-Safe or Non-Spring Return

FEATURES

- Balanced Plug Design
- Spring Return Solutions for up to 6 " Valves
- Bronze or Stainless Trim

BENEFITS

- Perfect for high close-off requirements
- Fail-safe on larger valves
- Covers wide range of operating temperatures
- Equal percent (G6C) (G6CS) or linear characteristic (G6LCS) for steam applications

Electronic

G6...C(S), G7...(S) Series

G6...C(S)-250	Two-way Flanged ANSI 250 Bronze or Stainless Trim
G7...(S)	Three-way Flanged Bronze or Stainless Trim
G7...(S)-250	Three-way Flanged ANSI 250 Bronze or Stainless Trim
Three-way Valves available in Mixing or Diverting	
	21/2" to 6"
Service	Chilled/hot water, 60\% glycol, steam (G6C)
C_{v} Range	65-344 (Two-way) 68-340 (Three-way Mixing) 68-248 (Three-way Diverting)
Material	Stainless steel stem, Bronze plug or Stainless plug
Control	On/Off, Floating Point, 2-10 VDC Multi-Function Technology ${ }^{\circledR}$ Electronic Fail-Safe or Non-Spring Return

FEATURES

- Complete flanged product range
- Mixing or diverting options
- Multi-Function Technology ${ }^{\circledR}$
- ANSI 125/ANSI 250

BENEFITS

- Fits wide range of applications
- Capable of any control signal
- Suitable for piping systems

Warning!

Valve should not be used for combustible gas applications. Gas leaks and explosions may result. Do not install in systems which exceed the ratings of the valve.

- Avoid installations where valve may be exposed to excessive moisture, corrosive fumes, vibration, high ambient temperatures, elements, or high traffic areas with potential for mechanical damage.
- Valve assembly location must be within ambient ratings of actuator. If the temperature is below $-22^{\circ} \mathrm{F}$, a heater is required.
- The valve assembly will require heat shielding, thermal isolation, or cooling at the actuator if combined effect of medium and ambient temperatures (conduction, convection, and radiation) is above $122^{\circ} \mathrm{F}$ for prolonged time periods.
- Strainers should be installed before coil and valve.
- Visual access must be provided. Assembly must be accessible for routine service. Contractor should provide unions for removal from line and isolation valves.
- Avoid excessive streses. Mechanical support must be provided where reducers have been used and the piping systems may have less structural integrity than full pipe sizes.
- Vertical pipes with valves and dual actuators may require support for linkage.
- Sufficient upstream and downstream piping runs must be provided to ensure proper valve capacity and flow response. Five diameters in each direction are reccomended.
- Life span of the valve stems and packing is dependent on maintaining non-damaging conditions. Poor water treatment or filtration, corrosion, scale or other particulate can result in damage to trim components. A water treatment specialist should be consulted.

1. Inspect shipping package, valve, linkage, and actuator for physical damage. If shipping damage has occurred, notify appropriate carrier. Do not install.
2. If this is a replacement, remove the existing valve, linkage, and actuator from the piping system.
3. If actuator and linkage are removed, they must be reinstalled correctly. The actuator must be rotated so that the valve seats properly for close-off.
4. Install valve with the proper ports as inlets and outlets. See piping charts on next page. Check that inlet and outlet of 2-way valves are correct; check that the "A", "B", and "AB" ports of 3-way valves are piped correctly. Flow direction arrows must be correct.
5. Blow out all piping and throughly clean below valve installation.
6. clean male pipe threads with wire brush and rag. If threads have been damaged or exposed to weather, running a tap or die over the threads may straighten them. Clean pipes, threads, and valve threads before installation. Check for any foreign material that can become lodged in trim components. Strainers should be cleaned after initial startup.
7. Pipe sealing compound may not be applied to either flange or gasket.
8. Flanged bodies must be used with flanges which are rated for the service. 125 lb . flanges have flat faces and may not be bolted to raised face flanges. Gaskets rated for the medium and temperaturepressure must be used.
9. Valve must be installed with the stem towards the vertical, not below the horizontal.
10. Tighten bolts alternatively and evenly around the flange.
11. 2-way valve Normally Open (NO) or Normally Closed (NC) configurations must be verified by examining both the mechanical drawings and the valve and actuator.
12. 3-way valve Normally Open (NO) or Normally Closed (NC) configurations for the control port and the bypass port must be verified by examining both the mechanical drawings and the valve and actuator.

Check specifications for every application to be sure of ports and designations.

U, L, and C designations

U is for Upper, the control port.
L is for Lower, the bypass port.
C is for Common.
Viewed with the bonnet upwards ad the U port on the left, the L port is the bottom port, and the C is the right port. With the stem up, L is open to Common. With the stem down, U is open to Common.

FLOW PATTERN - Flow Pattern is Marked on Valve

G7 3-way Mixing Valve
Stem Up $=0$ pen B to $A B$
stem Up = Open B to AB

G7...D 3-way Diverting Valve Stem Up = Open AB to B

VALVE ASSEMBLY SET-UP - Specify Upon Ordering

2-WAY VALVE

	EV, RV Series	NC: Normally closed A to $A B$, valve will open upon increase in signal/power. Note: To change valve to A to AB open, reverse the directional switch in actuator.	NO: Normally open A to AB, valve will close upon increase in signal/power. Note: To change valve to A to AB closed, reverse the directional switch in actuator.
	AFB, AFX Series On/Off	NO/FO: Normally open A to AB valve will drive closed. Spring Action: Will fail open A to AB upon power loss.	NC/FC: Normally closed A to $A B$ valve will drive open. Spring Action: Will fail closed A to $A B$ upon power loss.
	AFB, AFX MFT Series	NC/FO: Normally closed A to $A B$, valve will open upon increase in signal. Note: To change valve to A to $A B$ open, reverse CW/CCW switch. Spring Action: Will fail open A to AB upon power loss.	NO/FC or NC/FC: Normally Open/Normally Closed: valve can be open or closed, will drive closed or open A to AB (can be chosen with CW/CCW switch). Spring Action: Closed A to AB upon power loss.
			NO/FO: Normally open A to AB. Spring Action: Will fail open A to AB upon power loss. (NO or NC action can be chosen with CW/CCW switch).
	AVK, GK Series	NC/FO: Normally closed A to AB, valve will open upon increase in signal. Note: To change valve to A to $A B$ open, reverse $C W / C C W$ switch. Fail Position: Will default fail A to AB open, from the factory. Fail position can be set from $0 \%-100 \%$, in 10% increments.	NO/FC or NC/FC: Valve: Can be open or closed, will drive closed or open A to AB (can be chosen with CW/CCW switch). Fail Position: Will default fail A to AB open, from the factory. Fail position can be set from $0 \%-100 \%$, in 10% increments.
			NO/FO: Normally open A to AB. Fail Position: Will default fail A to AB open, from the factory. Fail position can be set from $0 \%-100 \%$, in 10% increments.

3-WAY MIXING VALVE

Ev, RV Series

AFB, AFX Series

 On/OffAFB, AFX MFT
Series

AVK, GK Series
NC/FO Normally closed A to AB, valve will open upon increase in signal. Note: To change valve to A to AB open, reverse $\mathrm{CW} / \mathrm{CCW}$ switch. Fail Position: Will default fail A to AB open, from the factory. Fail position can be set from $0 \%-100 \%$, in 10% increments.

NO: Normally open A to $A B$, will close upon increase in signal/power
Note: To change valve to A to $A B$ closed, reverse the directional switch in actuator.

NC/FC Normally closed A to AB, valve will drive open. Spring Action: Will fail closed A to $A B$ upon power loss.

NO/FC or NC/FC Normally Open/Normally Closed: valve be open or closed, will drive closed or open A to AB (can be chosen with CW/CCW switch). Spring Action: Closed A to $A B$ upon power loss.

NO/FO Normally open A to AB. Spring Action: Will fail open A to AB upon power loss. (NO or NC action can be chosen with CW/CCW switch).

NO/FC or NC/FC Valve: Can be open or closed, will drive closed or open A to AB (can be chosen with CW/CCW switch). Fail Position: Will default fail A to AB open, from the factory. Fail position can be set from $0 \%-100 \%$, in 10% increments.

NO/FO Normally open A to AB. Fail Position: Will default fail A to AB open, from the factory. Fail position can be set from $0 \%-100 \%$, in 10% increments.

3-WAY DIVERTING VALVE

EV, RV Series

AFB, AFX Series On/Off

AFB, AFX MFT
Series

AVK, GK Series

NC: Normally closed AB to B, will open upon increase in signal/power.
Note: To change valve to $A B$ to B open, reverse the directional switch in actuator.

NO/FO Normally open AB to B, valve will drive closed. Spring Action: Will fail open AB to B upon power loss.

NC/FO Normally closed $A B$ to B, valve will open upon increase in signal. Note: To change valve to $A B$ to B open, reverse CW/CCW switch. Spring Action: Will fail open $A B$ to B upon power loss.

NC/FO Normally closed $A B$ to B, valve will open upon increase in signal. Note: To change valve to $A B$ to B open, reverse CW/CCW switch. Fail Position: Will default fail $A B$ to B open, from the factory. Fail position can be set from $0 \%-100 \%$, in 10% increments.

NO: Normally open $A B$ to B, will close upon increase in signal/power. Note: To change valve to $A B$ to B closed, reverse the directional switch in actuator.

NC/FC Normally closed $A B$ to B, valve will drive open. Spring Action: Will fail closed $A B$ to B upon power loss

NO/FC or NC/FC Normally Open/Normally Closed: valve be open or closed, will drive closed or open $A B$ to B (can be chosen with CW/CCW switch). Spring Action: Closed $A B$ to B upon power loss.

NO/FO Normally open $A B$ to B. Spring Action: Will fail open $A B$ to B upon power loss. (NO or NC action can be chosen with CW/CCW switch).
NO/FC or NC/FC Valve: Can be open or closed, will drive closed or open $A B$ to B (can be chosen with CW/CCW switch). Fail Position: Will default fail $A B$ to B open, from the factory. Fail position can be set from $0 \%-100 \%$, in 10% increments

NO/FO Normally open $A B$ to B. Fail Position: Will default fail $A B$ to B open, from the factory. Fail position can be set from $0 \%-100 \%$, in 10% increments.

2-WAY

2-way Valve Piping Diagram

(1 Input, 1 Output)

3-WAY MIXING

3-WAY DIVERTING

3-way Diverting Valve Piping Diagram

(1 Input, 2 Outputs)

INSTALLATION

Valve must be installed in these orientations only.

UGLK Linkage

ANSI 125

c	FLANGES			DRILLING			BOLTING		
Nominal Pipe Size	A Flange	B	Flange Thickness	$\int \begin{gathered}\text { Diameter of } \\ \text { Bolt Circle }\end{gathered}$	D	Diameter of Bolt Holes	Number of Bolits	Diameter of Bolts	E. Machine Bolts
21/2"	$7{ }^{\prime \prime}$		11/16"	$51 / 2^{\prime \prime}$		$3 / 4$ "	4	$5 / 8$ "	$21 / 2^{\prime \prime}$
3"	$71 / 2^{\prime \prime}$		$3 / 4$ "	$6 "$		$34^{\prime \prime}$	4	$5 / 8{ }^{\prime \prime}$	$21 / 2^{\prime \prime}$
4"	$9 "$		15/16"	$71 / 2^{\prime \prime}$		$3 / 4$ "	8	$5 / 81$	3"
5"	10"		15/16"	81/2"		$7 / 8{ }^{\prime \prime}$	8	$3 / 4$ "	3 "
6 "	11"		$1 "$	$91 / 2{ }^{\prime \prime}$		$7 / 8{ }^{\prime \prime}$	8	$3 / 4$ "	$31 / 4$ "

ANSI 250
Flange Detail for American Standard 250 lb . Gast lron Pipe Flanges

	FLANGES			DRILLING		BOLTING		
Nominal Pipe Size	4 Flange	B Flange	E. Diameter of	Diameter of Bolt Circle	D Diameter of	Number of Bolts	Diameter of Bolts	E $\begin{gathered}\text { Length of } \\ \text { Machine Bolts }\end{gathered}$
$21 / 2^{\prime \prime}$	$71 / 2$ "	1"	$415 / 16$ "	57/8"	$7 / 8$ "	8	$3 / 4$ "	$31 / 4$ "
3 "	81/4"	$11 / 8$ "	$5^{11 / 16 "}$	$65 / 8$ "	$7 / 8{ }^{\prime \prime}$	8	$3 / 4$ "	$31 / 4$ "
4"	10"	$11 / 4 "$	$6^{15 / 16 "}$	77/8"	$7 / 8$ "	8	$3 / 4$ "	$33 / 4 "$
$5 "$	11"	$13 / 8$ "	85/16"	91/4"	$7 / 8{ }^{\prime \prime}$	8	$3 / 4$ "	$4 "$
$6 "$	$121 / 2^{\prime \prime}$	17/16"	$9^{11 / 16 "}$	105/8"	$7 / 8$ "	12	$3 / 4$ "	4"

Non-Spring Return Actuator with - 3

On/Off

Triac Sink
Non-Spring Return Actuator with MFT

On/Off

VDC / 4 to 20 mA

Non-Spring Return Actuator with -SR

VDC / 4 to 20 mA

Selector Switches

Non-Spring Return Actuator with -3

$$
\mathbb{O W}_{y}
$$

Electronic Fail-Safe Actuator with -3

On/Off

On/Off

Triac Sink
Electronic Fail-Safe Actuator with MFT

On/Off

Floating Point

Floating Point

Triac Source

Floating Point

Notes:

∇
Meets cULus requirements without the need of an electrical ground connection
(A) Actuators with appliance cables are numbered.

Actuators may be connected in parallel. Power consumption and input impedance must be observed.
3 Actuators may also be powered by 24 VDC . S

A 500Ω resistor converts the 4 to 20 mA control signal to 2 to 10 VDC.

8
Control signal may be pulsed from either the Hot (Source) or Common (Sink) 24 VAC line.

Contact closures A \& B also can be triacs. A \& B should both be closed for the triac source and open for triac sink.

For triac sink the Common connection from the actuator must be connected to the Hot connection of the controller. Position feedback cannot be used with a triac sink controller. The actuator internal common reference is not compatible.

IN4004 or IN4007 diode. (IN4007 supplied, Belimo Part number 40155)
Actuators with plenum rated cable do not have numbers on wires; use color codes instead.

Electronic Fail-Safe Actuator with -3 and -SR

On/Off

On/Off

Triac Sink
Electronic Fail-Safe Actuator with MFT

On/Off

Floating Point

Floating Point

Triac Source

Floating Point

Notes:
Meets cULLs requirements without the need of an electrical ground connection
(A) Actuators with appliance cables are numbered.

Actuators may be connected in parallel. Power consumption and input impedance must be observed.
3. Actuators may also be powered by 24 VC.

5 Only connect common to neg. (-) leg of control circuits.
A A 500Ω resistor converts the 4 to 20 mA control signal to 2 to 10 VC.

B Control signal may be pulsed from either the Hot (Source) or Common (Sink) 24 VAC line.

Contact closures A \& B also can be triacs. A \& B should 9. both be closed for the triad source and open for triad sink.

For triac sink the Common connection from the actuator must be connected to the Hot connection of the
10. controller. Position feedback cannot be used with a triac sink controller. The actuator internal common reference is not compatible.

IN4004 or IN4007 diode. (IN4007 supplied, Belimo Part number 40155)

Actuators with plenum rated cable do not have numbers on wires; use color codes instead.
Power-Off Postion

On/Off

24V AC/DC

FC	FO
$\mathrm{A}-\mathrm{AB}=\mathbf{0 \%}$	$\mathrm{A}-\mathrm{AB}=100 \%$

-SR/-MFT
24V AC/DC

Floating Point

24V AC/DC

Spring Return Actuator with On/Off, Floating Point and -SR

On/Off
Spring Return Actuator with MFT

Triac Sink

On/Off

VDC / 4 to 20 mA

Auxiliary Switches

24 VAC up to 240 VAC

Triac Source

Floating Point

Override Control Min, Mid, Max Postions

Triac Sink with Separate Transformer

Override

Low Limit Control

High Limit Control

Wiring multiple actuators to a Series 90 Controller

Wiring Multiple Actuators to a Series 90 Controller using Minimum Position Potentiometer

Used with the W973 and W7100 controllers

Typical Wiring Diagrams for Multiple Actuators used with the W973, W7100 and T775 controllers

Notes:

[^0]Installation Instructions

Spring Return Actuator with On/Off, Floating Point and -SR

On/Off
Spring Return Actuator with MFT

Triac Sink

VDC / 4 to 20 mA

Auxiliary Switches

120 VAC
230 VAC
2) 20

Max| Function | a | |
| :--- | :--- | :---: |
| 100% | | |

24 VAC up to 240 VAC

Triac Source

Floating Point

Override Control Min, Mid, Max Postions

VDC / 4 to 20 mA (Master/Slave)

Triac Sink with Separate Transformer

PWM

Notes:

- Meets cULus requirements without the need of an electrical ground connection
(A) Actuators with appliance cables are numbered.

Actuators may be connected in parallel. Power 2 consumption and input impedance must be observed.

3 Actuators may also be powered by 24 VDC .
5 Only connect common to neg. (-) leg of control circuits.
4. $A 500 \Omega$ resistor converts the 4 to 20 mA control signal to 2 to 10 VDC .

8 Control signal may be pulsed from either the Hot (Source) or Common (Sink) 24 VAC line

Contact closures A \& B also can be triacs. A \& B should both be closed for the triac source and open for triac sink.

For triac sink the Common connection from the actuator must be connected to the Hot connection of the controller 10. Position feedback cannot be used with a triac sink controller. The actuator internal common reference is not compatible.

Actuators with plenum rated cable do not have numbers on wires; use color codes instead.

All 120 VAC, 230 VAC, and UP actuators use appliance rated cables.
43. UP models use "L" instead of "H" on \#2 wire.

Belimo worldwide: wuw.belimo.com

BELIMO Americas

USA Locations, 33 Turner Road, Danbury, CT 06810
Tel. 800-543-9038, Fax 800-228-8283, marketing@us.belimo.com
1049 Fortunato Loop, Sparks, NV 89436
Tel. 800-987-9042, Fax 800-987-8875, marketing@us.belimo.com
Canada Locations, 5845 Kennedy Road, Mississauga, Ontario L4Z 2G3
Tel. 866-805-7089, Fax 905-712-3124, marketing@us.belimo.com
Latin America and the Caribbean Customer Service
Tel. 203-791-8396, Fax 203-791-9139, marketing@us.belimo.com
Belimo Brasil Comércio de Automação Ltda.
Tel: 5511 3643-5656, Fax: 55113643 5657, atendimentoaocliente@br.belimo.com.

[^0]: Actuators with plenum rated cable do not have numbers on wires; use color codes instead.

 21 Provide overload protection and disconnect as required.
 22. Actuators and controller must have separate
 transformers.
 23. Consult controller instruction data for more detailed information.

 Resistor value depend on the type of controller and the number of actuators. No resistor required for one actuator. Honeywell ${ }^{\oplus}$ resistor kits may be used.

